# CPE 470 -Open Source ASIC Design

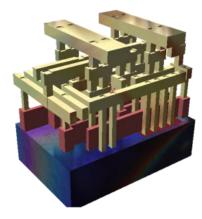
Taught by Francisco Wilken



#### What is the Goal?

- Design an ASIC!
  - Basically a chip that solves a specific problem really well

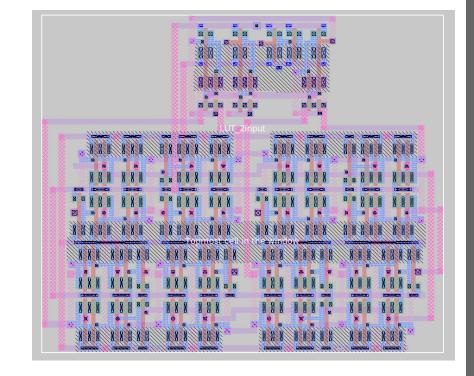
- RTL Design of System
  - Describe system using HDL
    - HDL is the specific language used
    - In our case **System Verilog**
- Simulate and Validate Design
- Use EDA tools to turn RTL into manufacturable product


#### **Glossary**

**ASIC:** Application Specific Integrated Circuit

**RTL**: Register Transfer Layer

**HDL:** Hardware Description Language **EDA**: Electronics Design Automation


3D Visualization of Manufacturable File



### Why Not FPGAs?

- FPGAs are great prototyping tools!
  - Also used extensively in products

However...



- Re-Configurable **LookUp Table** (**LUT**) takes ~200 transistors
- Static Logic Gates generally take 2-12 transistors
- Static Gates are ~20 times smaller

### **FPGA vs ASIC Tradeoffs**

|                  | FPGA   | ASIC |
|------------------|--------|------|
| Development Cost | Low    | High |
| Unit Price       | High   | Low  |
| Speed            | Medium | High |
| Logic Density    | Low    | High |

#### **Fabs and Foundries**

 Chips have to be specifically designed for a certain manufacturer

- Once designed, send to foundry
  - Sending off your design is called a Tape-Out
  - Named after sending physical tapes of design files

#### Glossary

**Fab:** Factory or plant that makes chips

**Foundry**: Company that makes chips for others **Tape Out:** Send final design to get fabricated

**Industry Foundries** 







Open Source Foundries

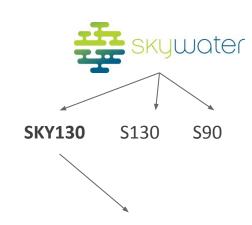






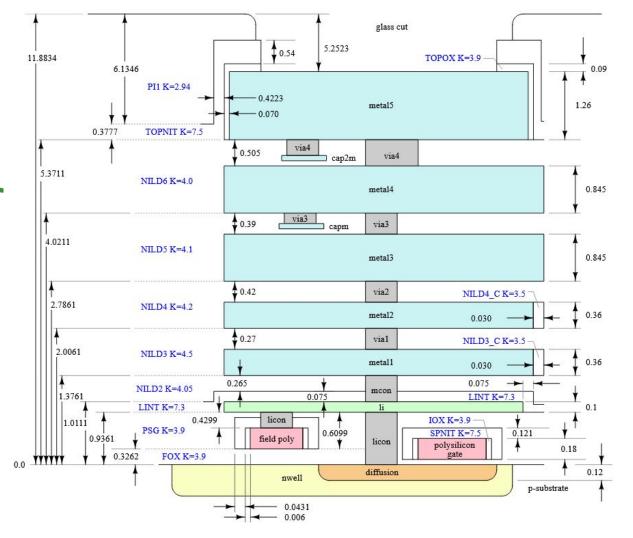
### **Process Nodes and PDKs**

**Glossary** 


**PDK:** Process Design Kit

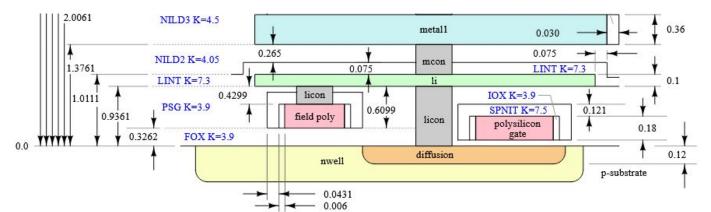
Process Node: a specific semiconductor manufacturing process

- Characterized by gate length, I.E. 130 nm
- Each Foundry has multiple process nodes at varying sizes and prices


Foundry provides a PDK for each of their Process Nodes:

- Technology Information:
  - Available Layers
  - Electrical Rules
  - Design Constraints
- Device Primitives
  - Base-level Transistors
  - Models of
- Standard Cells
  - Standardized Logic Gates



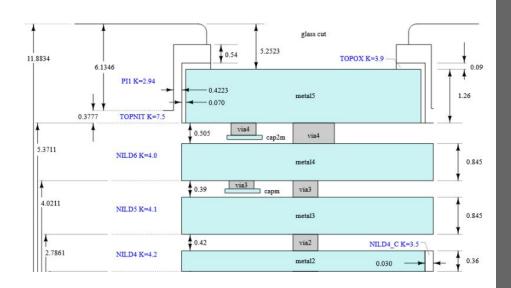

Tech Info, Standard Cells, Devices

# Skywater 130nm Stackup



### **Bottom Layers: Gates**

- Bottom layers are used to create logic gates
  - Substrate, Well, Diffusion, and Polysilicon Gate used to create transistors
  - Local Interconnect (LI) used to connect transistors into logic gates
- Low-numbered Metal used to create:
  - power and ground rails
  - contacts for inputs and outputs of logic gates



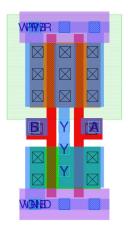

# **Top Metal Layers: Power and Routing**

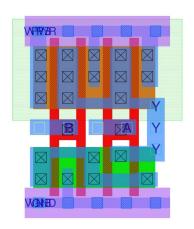
- Thicker Top Layers
  - Better current conduction
  - Power and Ground Distribution

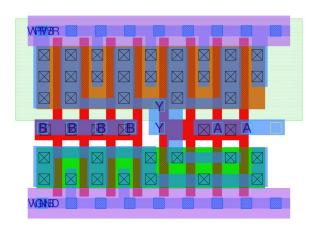
- Middle Layers used to route:
  - Clocks
  - Global signals
  - Connect Distant Gates

 Vias used to move between metal layers




#### sky130\_fd\_sc\_hd\_nand2

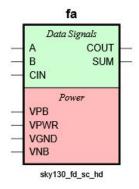

#### **Standard Cells**

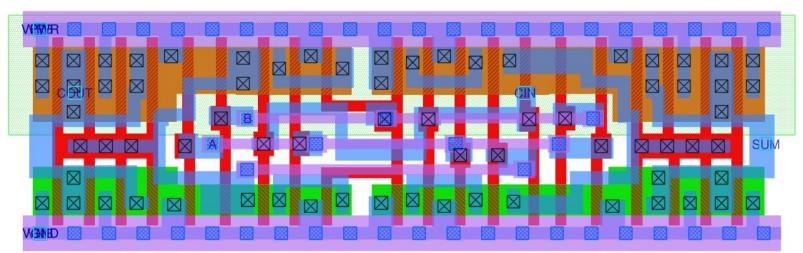

- Is an implementation of a standard logic function
  - For example: NAND (Not And)
  - Designed and tested by the Foundry
- Come in multiple sizes depending on drive strength
  - Drives Many Other Gates -> Larger
  - Drives Few Gates -> Smaller



| Α | В | Output |
|---|---|--------|
| 0 | 0 | 1      |
| 1 | 0 | 1      |
| 0 | 1 | 1      |
| 1 | 1 | 0      |






#### sky130\_fd\_sc\_hd\_fa

### **Larger Standard Cells**

- Vary in complexity:
  - Inverter -> Simplest Standard Cell
  - Full Adder -> More Complex Standard Cell
- Not all just simple boolean functions

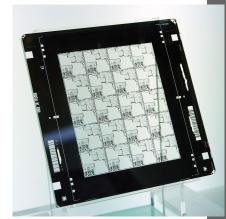


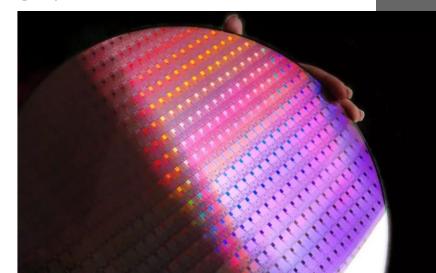


#### **Standard Cell Nomenclature**



<Process name> \_ <Library Source Abbreviation> \_ <Library Type Abbreviation> [\_ <Library Name>]


#### **Fabrication Time**

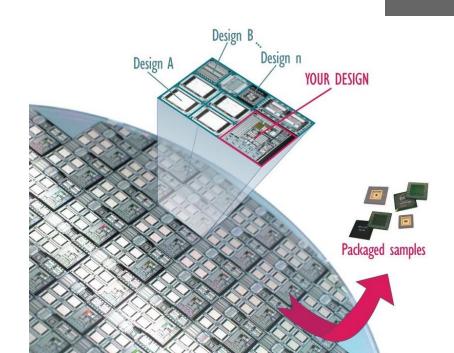

- Chips are mass produced on silicon wafers
  - Standard 12-inch wafer can fit ~300 chips

- Manufactured using masks for each layer of chip
  - Masks are expensive to produce but highly reusable
  - High Up-Front Cost, Low Unit Cost

- High Volume, Long Turnaround Time
  - Tape Outs can take 6+ months





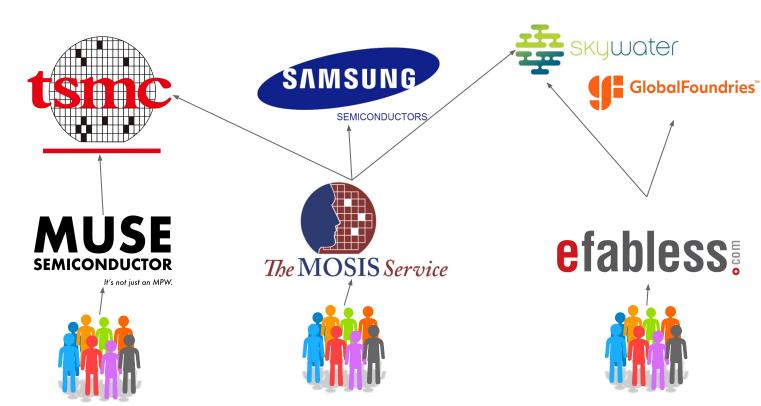



# **Multi Project Wafers**

**Glossary** 

MPW: Multi Project Wafer

- Buying an entire wafer of chips is ridiculously expensive
  - What if multiple people's designs could fit on one wafer?
- Enter MPW companies
  - Aggregate the designs of many parties
  - Combine into large mask
  - Work closely with foundry
  - o Profit?
- MPW programs also handle some difficulties:
  - Packaging Chips:
    - Raw Silicon -> Package with Pins
  - Analog Circuitry:
    - Driving IO Pins
    - Managing Power




### **MPW Landscape**

**Foundry** 

MPW Middleman

**End Users** 

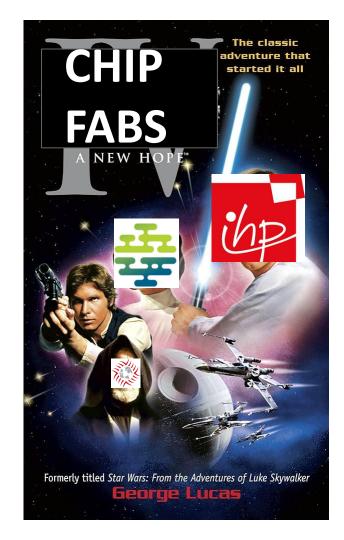


#### **MPW** Issues

- Most MPW services are still too expensive for educational use
- E-Fabless going out of business took away the cheapest option



The MOSIS Service invoices the Registration Fee
There is a \$10,000 Registration fee


Please note the minimum fabrication order is \$25,000





#### Now What?

Come back next time for future plans in education level tape outs.



### References

- https://skywater-pdk.readthedocs.io/en/main/
- https://themosisservice.com/
- https://en.wikichip.org/wiki/technology\_node

•

#### The major ASIC-related factors that affect system partitioning with ASICs are:

- maximum die size
- type of ASIC design
- speed requirements
- type of logic
- power dissipation
- I/O per chip available